

Wireless M-Bus Host Controller

Interface DLL

Specification

Document ID: 4100/6404/0051

 IMST GmbH

 Carl-Friedrich-Gauß-Str. 2-4

 47475 KAMP-LINTFORT

 GERMANY

 Specification

Wireless M-Bus Host Controller Interface DLL General Information

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page i

Document Information

File name WMBus_HCIDLL_Spec.docx

Created 2011-06-24

Total pages 48

Revision History

Version Note

0.1 Created, Initial Version

0.2 Draft Version Created For Review

0.5 Preliminary Version

1.0 Reviewed and released

1.1 AES functions added

1.2 C-Mode added

1.3 Rework

1.4 AES Decryption Configuration changed

Aim of this Document

This document describes the Wireless M-Bus HCI DLL Application Interface.

 Specification

Wireless M-Bus Host Controller Interface DLL Table of Contents

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page ii

Table of Contents

1. INTRODUCTION 4

1.1 Overview 4

2. SERVICES 5

2.1 General DLL Functions 5

2.1.1 WM-Bus Connection Handle 5

2.1.2 Error Handling 7

2.1.3 Get DLL Version 9

2.1.4 Set Timeout 9

2.1.5 Register Message Handler 10

2.1.6 Get HCI Message 11

2.1.7 Shutdown 13

2.2 Device Management Functions 14

2.2.1 Ping Request 14

2.2.2 Reset Request 16

2.2.3 Device Information 17

2.2.4 Device Configuration 18

2.2.5 System Operation Modes 26

2.2.6 System Status 28

2.2.7 Firmware Information 29

2.2.9 RTC Support 32

2.2.10 Host controlled Power Saving 33

2.2.11 AES-128 Encryption / Decryption 34

2.2.12 AES Decryption Error Indication 35

2.3 Data Link Services 37

2.3.1 Send Message 37

2.3.2 Message Reception 38

2.3.3 WM-Bus Data Request 38

2.4 Radio Link Test 40

2.4.1 Start Radio Link Test 41

2.4.2 Radio Link Test Status Message 42

 Specification

Wireless M-Bus Host Controller Interface DLL Table of Contents

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page iii

2.4.3 Stop Radio Link Test 42

2.5 Hardware Test Functions 43

2.5.1 Radio Test Functions 43

3. APPENDIX 44

3.1 List of Abbreviations 44

3.2 List of Figures 44

3.3 References 45

4. REGULATORY COMPLIANCE INFORMATION 45

5. IMPORTANT NOTICE 46

5.1 Disclaimer 46

5.2 Contact Information 46

 Specification

Wireless M-Bus Host Controller Interface DLL Introduction

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 4

1. Introduction

1.1 Overview

The WM-Bus HCI library enables Windows applications to configure and

control several kinds of Radio Modules which support the IMST WM-Bus Host

Controller Interface (HCI). Such modules are referred to as WM-Bus Modules

hereafter.

WMBus Studio

Windows Host PC

 A
p

p
lic

a
ti
o

n
W

M
B

u
s
H

C
I.
D

L
L

WMBus DLL API

HCI Protocol

User Application

Serial COM Ports
WBus

Firmware

W
in

d
o

w
s

iM871A

*

*

Fig. 1-1: Overview

The library supports several service functions which use the WM-Bus HCI

Protocol (see [1]) to communicate with an attached WM-Bus Module (e.g.

iM871A). These HCI messages will be sent through a Serial Comport

(COM1…X).

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 5

2. Services

This chapter outlines the supported DLL functions which are subdivided into

the following functional groups:

 General DLL functions which are not related to a connected radio

module

 Device Management functions for configuration & control

 Data Link functions for data exchange

 Radio Link Test function for radio performance measurements

 Hardware Test functions

2.1 General DLL Functions

This chapter covers functions which are only related to the WM-Bus HCI DLL

itself.

2.1.1 WM-Bus Connection Handle

The key element for communication with a dedicated connected WM-Bus

device is a so called WM-Bus Connection Handle (TWMBusHandle). A handle

can be obtained by opening a dedicated Serial Comport. In general the

WM-Bus DLL supports access to multiple connected WM-Bus Modules in

parallel.

2.1.1.1 Open Device

This function opens a Serial Communication Port to a connected WM-Bus

Module. On success the function returns a WM-Bus Connection Handle which

can be used for communication purposes. Note: This function doesn’t check if

a device is really connected, it only opens the Serial Port.

Prototype

- TWMBusHandle WMBus_OpenDevice(const char *comPort)

Parameter

- comPort pointer to Comport name e.g. “COM1”

Return Value

- 0 invalid handle

- else valid handle

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 6

Note: TWMBusHandle is defined as unsigned long.

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 7

2.1.1.2 Close Device

This function closes a Serial Communication Port.

Prototype

- bool WMBus_CloseDevice(TWMBusHandle handle)

Parameter

- handle communication handle

Return Value

- true comport closed

- false error

2.1.2 Error Handling

Most of the provided DLL functions simply return the boolean value false in

case of an error or true in case of success. The detailed error reason is stored

within the DLL and can be readout and translated into a human readable

error string.

2.1.2.1 Get Last Error

This function returns the error code of the last triggered function.

Prototype

- UINT32 WMBus_GetLastError(TWMBusHandle handle)

Parameter

- handle communication handle

Return Value

- error code

2.1.2.2 Get Error String

Error codes can be translated in human readable error strings by means of

the following function.

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 8

Prototype

- void WMBus_GetErrorString (UINT32 error,

 char* string,

 int size)

Parameter

- error an error code returned by WMBus_GetLastError

- string pointer to string

- size size in bytes of the character array

Note: A size of at least 64 byte is recommended.

Return Value

- an updated ‘0’ terminated string

2.1.2.3 Error Codes and Strings

The following table shows the implemented error codes and strings:

Error Codes Error Strings

0 “WMBUS_NO_ERROR”

1 "WMBUS_INVALID_COMPORT"

2 "WMBUS_CONNECTION_BUSY"

3 "WMBUS_INVALID_HANDLE"

4 “WMBUS_NO_RESPONSE"

5 "WMBUS_TRANSMIT_ERROR”

6 "WMBUS_UNEXPECTED_FRAMELENGTH"

7 "WMBUS_COMMAND_NOT_SUPPORTED"

8 "WMBUS_COMMAND_FAILED"

9 "WMBUS_UNEXPECTED_STATUS"

10 "WMBUS_UNEXPECTED_RESPONSE_CODE"

11 "WMBUS_UNEXPECTED_COMMAND_ERROR"

12 "WMBUS_INVALID_PARAMETER"

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 9

2.1.3 Get DLL Version

This function returns the DLL Version string.

Prototype

- bool WMBus_GetDLLVersion (char* resultString,

 int size)

Parameter

- resultString pointer to an character array

- size size in byte of the character array

Note: A size of at least 32 byte is recommended.

Return Value

- true an updated resultString

- false resultString size to small

2.1.4 Set Timeout

After sending a HCI Command message to the connected device the DLL is

waiting for a response. The maximum wait time in milliseconds can be

configured by means of this function.

Prototype

- bool WMBus_SetTimeout(TWMBusHandle handle,

 UINT32 timeout)

Parameter

- handle communication handle

- timeout timeout in milliseconds

Note: the default value is 1000 ms

Return Value

- true parameter changed

- false error

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 10

2.1.5 Register Message Handler

Most of the service functions are processed in a synchronous way i.e. a

function doesn’t return until a WM-Bus device response was received or a

configurable timeout expires.

For asynchronous communication an application can register a message

handler to listen for several kinds of messages which are generated within the

DLL. The message handler will receive 2 different parameters when called, the

message type (msg) and a generic parameter (param) with different

meaning depending on the given message type.

Prototype

- void WMBus_RegisterMsgHandler(TWMBus_CbMsgHandler cbMsgHandler)

Parameter

- cbMsgHandler pointer to message handler procedure

The function pointer type is defined as follows:

typedef void (*TWBus_CbMsgHandler)(UINT32 msg, UINT32 param)

Return Value

- none

The following messages are implemented:

Message Parameter Description

WMBUS_MSG_HCI_MESSAGE_IND

(0x00000004)

Handle a HCI message is available

and can be read by means

of WMBus_GetHCIMessage

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 11

2.1.6 Get HCI Message

This function can be used to read buffered HCI Messages.

Prototype

- bool WMBus_GetHCIMessage (TWBusHandle handle,

 UINT8* buffer,

 UINT16 bufferSize)

Parameter

- handle communication handle

- buffer pointer to message buffer (256 bytes recommended)

- bufferSize size of message buffer

Return Value

- true message readout successfully

- false error, no message/frame available

Message Buffer Layout

Ctrl Field

4 Bit

Endpoint

4 Bit

Message ID

8 Bit

Payload

Length (n)

8 Bit

Message Payload

n * 8 Bit

Time Stamp

(optional)

32 Bit

Message Header
RSSI

(optional)

8 Bit

Fig. 2-1: Overview

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 12

Offset Size Name Description

0 1 Ctrl Field &

Endpoint ID

Endpoint Identifier (Bits 0-3), indicates to

which logical endpoint this message

belongs. The following endpoint are

available:

0x01 : Device Management Services

0x02 : Radio Data Link Services

0x03 : Radio Link Test

0x04 : Hardware Test Services

Bit 4 : reserved

Bit 5 : (0x20) indicates if a 32-Bit Timestamp

is attached

Bit 6 : (0x40) indicates if an 8-Bit RSSI is

attached

Bit 7 : (0x80) reserved

1 1 Message ID Message Identifier, indicates the type of

this message

2 1 Payload Length Length = Size of Payload Field in bytes

3 …

N+2

N Payload Message dependend Payload Field

N + 3 4 Time Stamp optinal Time Stamp (indicates time of

received RF message e.g.)

N + 4 1 RSSI optional RSSI value (see device

configuration)

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 13

2.1.7 Shutdown

An application should call the Shutdown function when finished so that the

DLL can close all connections and release all allocated system resources.

Prototype

- bool WMBus_DLLShutdown()

Parameter

- none

Return Value

- always true

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 14

2.2 Device Management Functions

This chapter describes functions which are mapped to the so called Device

Management endpoint of the firmware. This endpoint provides general

services for module configuration, module identification, and everything

which is not related to the data exchange via radio link. The following services

are available:

 Ping

 Reset

 Device Information

 Device Configuration

 Factory Reset

 System Operation Modes

 System Status

 Firmware Information

 Real Time Clock Support

 Host controlled Power Saving Support

2.2.1 Ping Request

This function can be used to check the wired communication interface and if

the connected device is alive. A “Ping Command” message is send to the

local connected device which answers with a “Ping Response” message.

Host

Controller
WM-Bus Module

HCI_Rsp(PingRsp)

HCI_Cmd(PingReq)

Fig. 2-2: Ping Request

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 15

Prototype

- bool WMBus_PingRequest(TWMBusHandle handle)

Parameter

- handle communication handle

Return Value

- true device connected and alive

- false error

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 16

2.2.2 Reset Request

This message can be used to reset the WM-Bus Module. The reset will be

performed after approx. 500ms.

Host

Controller

WM-Bus

Module

HCI_Cmd(ResetReq)

HCI_Rsp(ResetRsp) Timer_Expired

SW

Timer

StartTimer

SW Reset

Fig. 2-3: Reset Request

Prototype

- bool WMBus_ResetRequest(TWMBusHandle handle)

Parameter

- handle communication handle

Return Value

- true device will be reset

- false error

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 17

2.2.3 Device Information

For identification purpose the WM-Bus Firmware provides a service to readout

some information elements e.g. Module Type, Firmware Version.

2.2.3.1 Get Device Info

This command returns the basic device information block.

Prototype

- bool WMBus_GetDeviceInfo(TWMBusHandle handle,

 UINT8* buffer,

 UINT16 bufferSize)

Parameter

- handle communication handle

- buffer pointer to buffer

- bufferSize size of buffer in bytes

Return Value

- true updated buffer

- false error

2.2.3.2 Device Information

The updated buffer has the following layout:

Offset Size Name Description

0 1 Result Length Number of bytes in buffer

1 1 ModuleType Identifies the Radio Module e.g.

iM871A

2 1 Device Mode Indicates the current Device Mode

e.g. Meter, Concentrator

3 1 Firmware Version Firmware Version, e.g. 0x13 = V1.3

4 1 HCI Protcol Version HCI Protocol Version, e.g. 0x01

5 – 8 4 Device ID Device ID

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 18

2.2.4 Device Configuration

The WM-Bus Firmware supports several kinds of configurable system

parameters which are stored in a non volatile parameter memory e.g. Flash or

EEPROM depending on the module type. The configuration parameters are

readout during start-up and used to configure the firmware components and

the hardware units. The following items can be configured:

Item Description

Device Mode Determines if the module operates in Meter

or Other Mode.

Radio Link Mode Determines one of the following radio link

modes:

S1, S1-m, S2, T1, T2, R2, C1, C2

WM-Bus Header Fields Fixed elements of the M-Bus Message

Header, can be used from internal

configuration memory for radio link access to

reduce HCI communication.

Radio Channel Selectable Radio Channel for R2 Mode

Radio Power Level Radio Output Power from -8dBm to +13dBm

Automatic Power Saving Enables the module to enter the low power

mode as soon as possible without Host

Controller interaction.

Radio Rx-Window Defines a time interval for reception of radio

messages in Meter Mode

Rx-Timestamp Attachment Enables the firmware to generate an RTC

timestamp for every received radio message.

The timestamp will be attached to the HCI

message when the radio message is passed

to the Host Controller.

RSSI Attachment Configures the firmware tor attach the RSSI

value for a received radio message when it is

passed to the Host Controller.

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 19

LED Control Enables the firmware to control several LEDs

for internal events.

LED1 – Alive Indicator: indicates if the module

is in low power mode (off) or not (on)

LED2 – Tx Indicator: this LED is toggled for

every transmitted radio message.

LED3 - Rx Indicator: this LED is toggled for

every received radio message with valid

CRC.

RTC Control Controls the Real Time Clock which can be

used to determine the operating hours or to

generate Rx-Timestamps.

2.2.4.1 Default Configuration

The following table lists the default configuration.

Parameter Value

Device Mode Other

Link Mode S2

WM-Bus C Field 0x00

WM-Bus Man ID Starter Kit : 0x0CAE

 USB Stick : 0x25B3

WM-Bus Device ID Starter Kit : 0x12345678

 USB Stick: <preconfigured address>

WM-Bus Version 0x01

WM-Bus Device Type 0x00

RF Power Level 7 : 13dBm

RF Channel 1 : 868.09 MHz (R-Mode)

Radio Rx Window 50 = 50ms

Auto Power Saving 0 : none

Auto RSSI Attachment 0 : not attached

Auto Rx Time Stamp

Attachment

 0 : not attached

LED Control 0 : disabled

RTC 0 : off

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 20

2.2.4.2 Get Device Configuration

This function can be used to readout the configuration parameters.

Prototype

- bool WMBus_GetDeviceConfig(TWMBusHandle handle,

 UINT8* buffer,

 UINT16 bufferSize)

Parameter

- handle communication handle

- buffer pointer to buffer

- bufferSize size of buffer in bytes

Return Value

- true updated buffer

- false error

Device Configuration

The updated buffer has the following layout:

Offset Size Name Description

0 1 Result Length Number of bytes in buffer

1 – N N Device Parameter List see Device Parameter List

2.2.4.3 Set Device Configuration

This function can be used to change several system parameters. The function

allows to change parameter directly and to save them in a non-volatile

memory (e.g. Flash or EEPROM).

Prototype

- bool WMBus_SetDeviceConfig(TWMBusHandle handle,

 UINT8* configList,

 UINT8 configLength,

 bool storeInNVM)

Parameter

- handle communication handle

- configList pointer to device parameter list

- configLength length in bytes in parameter list

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 21

- storeInNVM flag, if true the parameter will be stored in non-

 volatile memory

Return Value

- true device parameter set

- false error

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 22

2.2.4.4 Device Parameter List

The Device Parameter List contains the so called Information Indicator Flags

which indicate, if a configuration parameter is present or not. A bit which is

set to 1 means, that the corresponding parameter is included.

The device parameter list contains has the following layout:

Offset Size Name Description

0 1 IIFlag 1 Information Indicator Flag for first group of

parameters:

Bit 0 : Device Mode

Bit 1 : Radio Link Mode

Bit 2 : WM-Bus C Field

Bit 3 : WM-Bus Man ID

Bit 4 : WM-Bus Device ID

Bit 5 : WM-Bus Version

Bit 6 : WM-Bus Device Type

Bit 7 : Radio Channel

1 1 Device Mode 0x00 : Other

0x01 : Meter

variable 1 Radio Link

Mode

0 : S1

1 : S1-m

2 : S2

3 : T1

4 : T2

5 : R2

6 : C1, Telegram Format A

7 : C1, Telegram Format B

8 : C2, Telegram Format A

9 : C2, Telegram Format B

variable 1 WM-Bus C Field C Field, used in WM-Bus Radio Messages

variable 2 WM-Bus Man ID Manufacturer ID, used in WM-Bus Radio

Messages

variable 4 WM-Bus Device

ID

Device ID, used in WM-Bus Radio

Messages

variable 1 WM-Bus Version Version, used in WM-Bus Radio Messages

variable 1 WM-Bus Device

Type

Device Type, used in WM-Bus Radio

Messages

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 23

variable 1 Radio Channel RF Channel used in R2 Mode :

 1 : 868.09 MHz (R-Mode)

 2 : 868.15 MHz (R-Mode)

 3 : 868.21 MHz (R-Mode)

 4 : 868.27 MHz (R-Mode)

 5 : 868.33 MHz (R-Mode)

 6 : 868.39 MHz (R-Mode)

 7 : 868.45 MHz (R-Mode)

 8 : 868.51 MHz (R-Mode)

 9 : 868.57 MHz (R-Mode)

10 : 868.30 MHz (S-Mode)

11 : 868.95 MHz (T-Mode)

variable 1 IIFlag 2 Information Indicator Flag for second

group of parameters:

Bit 0 : Radio Power Level

Bit 1 : Radio Data Rate

Bit 2 : Radio Rx-Window

Bit 3 : Auto Power Saving

Bit 4 : Auto RSSI Attachment

Bit 5: Auto Rx-Timestamp Attachment

Bit 6: LED Control

Bit 7: RTC Control

variable 1 Radio Power

Level

RF Power Level:

 0 : -8 dBm

 1 : -5 dBm

 2 : -2 dBm

 3 : 1 dBm

 4 : 4 dBm

 5 : 7 dBm

 6 : 10 dBm

 7 : 13 dBm

variable 1 Radio Data

Rate

Radio Data Rate, reserved for future use

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 24

variable 1 Radio Rx-

Window

Reception Window [ms] after Transmit:

The module will listen for radio messages

for the given time before it enters a power

saving state. This parameter is useful

especially for battery powered devices

(Meters) which are configured for

bidirectional Radio communication (S2, T2,

R2, C2)

variable 1 Auto Power

Saving

Automatic Power Saving Management:

0 : off

1 : device enters power saving mode after

message transmission (S1, S1-m, T1, C1),

reception or when the Radio Rx Window

terminates (S2, T2, R2, C2).

variable 1 Auto RSSI

Attachment

This flag controls the automatic RSSI

output:

0 : no RSSI output

1 : RSSI output for each received Radio

message

variable 1 Auto Rx-

Timestamp

Attachment

This flag controls the automatic Rx-

Timestamp output:

0 : no output

1 : Rx-Timestamp attached for each

received Radio message

variable 1 LED Control Three LEDs can be selected independently

by setting the corresponding bit.

Bit 0 : LED1 - System Alive indicator

Bit 1 : LED2 - Radio message transmitted

Bit 2 : LED3 - Radio message received

variable 1 RTC Control 0 : RTC off

1 : RTC enabled

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 25

2.2.4.5 Factory Reset

This function can be used to reset the WM-Bus Module configuration to its

default factory settings.

Note: The new configuration gets active after reboot.

Prototype

- bool WMBus_FactoryResetRequest(TWMBusHandle handle,

 bool rebootFlag)

Parameter

- handle communication handle

- rebootFlag indicates if the device should perform reboot

Return Value

- true device configuration reset

- false error

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 26

2.2.5 System Operation Modes

The WM-Bus firmware can operate in different System Operation Modes. The

operation modes enable the device to align its behaviour according to a

given use case e.g. test mode, application mode. The system operation

mode is determined during firmware start and requires a reset to get

changed.

2.2.5.1 Get System Operation Mode

The following function returns the current System Operation Mode.

Prototype

- bool WMBus_GetOperationMode(TWMBusHandle handle,

 UINT8* mode)

Parameter

- handle communication handle

- mode pointer to return value

Return Value

- true operation mode read

- false error

2.2.5.2 System Operation Modes

The following System Operation Modes are supported:

Value Description

0 Standard Application Mode / Default Mode

1 Hardware Test Mode

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 27

2.2.5.3 Set Application Mode

This function sets the system into Application Mode and performs a firmware

reset.

Prototype

- bool WMBus_SetApplicationMode(TWMBusHandle handle)

Parameter

- handle communication handle

Return Value

- true Application mode set

- false error

2.2.5.4 Set Hardware Test Mode

This function sets the system into Hardware Test Mode and performs a

firmware reset.

Prototype

- bool WMBus_SetHWTestMode(TWMBusHandle handle)

Parameter

- handle communication handle

Return Value

- true HW Test mode set

- false error

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 28

2.2.6 System Status

The firmware provides several status values. Some values are only determined

during system startup while the others are updated continuously. All values

are maintained in RAM and are not stored in the non-volatile memory.

2.2.6.1 Get System Status

This function can be used to read the current System Status:

Prototype

- bool WMBus_GetSystemStatus(TWMBusHandle handle,

 UINT8* buffer,

 UINT16 bufferSize)

Parameter

- handle communication handle

- buffer pointer to buffer

- bufferSize size of buffer in bytes

Return Value

- true updated buffer

- false error

2.2.6.2 System Status Details

The updated buffer contains the following information:

Offset Size Name Description

0 1 Result Length Number of bytes in buffer

1 1 NVM Status 0x00 : no error

else : NVM contains corrupt data

2 1 Defects Number of stored Defects

3 – 6 4 SystemTick System Ticks with 10 ms resolution

7 – 10 4 Reserved

11 – 14 4 Reserved

15 – 18 4 NumTxFrames Number of transmitted messages

19 – 22 4 NumTxErrors Number of not transmitted messages

23 – 26 4 NumRxFrames Number of received messages

27 – 30 4 NumRxCRC Errors Number of received CRC errors

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 29

31 – 34 4 NumRxPHY Errors Number of Rx PHY errors

35 – 38 4 Reserved

2.2.7 Firmware Information

This function can be used to read information about the firmware itself.

Prototype

- bool WMBus_GetFWBuildInfo(TWMBusHandle handle,

 UINT8 key,

 UINT8* buffer,

 UINT16 bufferSize)

 Parameter

- handle communication handle

- key key for requested type of information

- buffer pointer to buffer

- bufferSize size of buffer in bytes

Return Value

- true updated buffer

- false error

Firmware Info

The updated buffer contains the following data depending on the given key:

Firmware Version, Key = 0x00

Offset Size Name Description

0 1 Result

Length

Number of bytes in buffer

1 1 Key Requested type of information

2 1 Length Length of FW information

3 1 Version Firmware Version

4 – 5 2 Build

Version

Build Version

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 30

Firmware Name, Key = 0x01

Offset Size Name Description

0 1 Result

Length

Number of bytes in buffer

1 1 Key Requested type of information

2 1 String

Length

Length of Firmware Name

3 - N+2 N String Firmware Name

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 31

Date String, Key = 0x02

Offset Size Name Description

0 1 Result

Length

Number of bytes in buffer

1 1 Key Requested type of information

2 1 String

Length

Length of Date String

3 - N+2 N String Date String

Time String, Key = 0x04

Offset Size Name Description

0 1 Result

Length

Number of bytes in buffer

1 1 Key Requested type of information

2 1 String

Length

Length of Time String

3 - N+2 N String Time String

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 32

2.2.9 RTC Support

The WM-Bus Module provides an embedded Real Time Clock which can be

used to determine the module operating hours or to generate timestamps for

every received radio link message. The RTC time can be read and set at any

time. The RTC is reset to zero during startup. For usage the RTC needs to be

enabled (see chapter Device Configuration).

2.2.9.1 Get RTC Time

This function can be used to read the RTC time:

Prototype

- bool WMBus_GetRTCTime(TWMBusHandle handle,

 UINT32* time)

Parameter

- handle communication handle

- time pointer to buffer for RTC time

Return Value

- true updated buffer with RTC time (32768Hz resolution)

- false error

2.2.9.2 Set RTC Time

This function can be used to set the RTC time:

Prototype

- bool WMBus_SetRTCTime(TWMBusHandle handle,

 UINT32 newTime)

Parameter

- handle communication handle

- newTime new RTC time (32768Hz resolution)

Return Value

- true RTC updated with new time

- false error

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 33

2.2.10 Host controlled Power Saving

In addition to the automatic power saving feature the firmware provides a

command to enter the low power mode. The LPM mode will be left with every

new HCI message.

Prototype

- bool WMBus_EnterLowPowerMode(TWMBusHandle handle,

 UINT8 mode)

Parameter

- handle communication handle

- mode must be set to 0x00

Return Value

- true low power mode will be entered

- false error

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 34

2.2.11 AES-128 Encryption / Decryption

The firmware supports automatic AES-128 encryption and decryption of radio

link messages. The following functions for key configuration and activation are

provided:

2.2.11.1 AES-128 Encryption Key Configuration

The following function can be used to configure the AES encryption key.

Prototype

- bool WMBus_ConfigureAESKey(TWMBusHandle handle,

 UINT8* key,

 bool storeInNVM)

Parameter

- handle communication handle

- key pointer to AES-128 encryption key (16 bytes)

- storeInNVM flag, if true the key will be stored in non-volatile memory

Return Value

- true AES key configured

- false error

2.2.11.2 AES-128 Encryption Service Activation

The following function can be used to enable or to disable the AES encryption

service.

Prototype

- bool WMBus_EnableAESKey(TWMBusHandle handle,

 bool enableFlag,

 bool storeInNVM)

Parameter

- handle communication handle

- enableFlag flag, if true enables the AES-128 encryption service

- storeInNVM flag, if true the key will be stored in non-volatile memory

Return Value

- true AES encryption enabled / disabled

- false error

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 35

2.2.11.3 AES-128 Decryption Key Configuration

This function can be used to change the AES-128 decryption key which is used for

packet reception. The function sets the decryption key for multiple WM-Bus

Devices in volatile memory. The keys and corresponding WM-Bus Device Address

Filters are stored in a table in volatile memory (RAM). During packet reception the

decryption key will be selected from that table according to the received WM-

Bus Device Address. If the decryption process fails as a result of an invalid key, an

error message will be sent to the host (see AES Decryption Error Indication). The

following function can be used to configure the AES decryption key.

Prototype

- bool

 WMBus_ConfigureAESDecryptionKey(TWMBusHandle handle,

 UINT8 slotIndex,

 UINT8* addressFilter,

 UINT8* key)

Parameter

- handle communication handle

- addressFilter pointer to WM-BUS Device Filter (see WMBus_HCI_Spec.pdf)

- key pointer to AES-128 decryption key (16 bytes)

Return Value

- true AES key configured

- false error

2.2.12 AES Decryption Error Indication

This message is sent to the host in case of a failed packet decryption. It

indicates that the AES encryption key used on sender side and the AES

decryption key used on receiver side are not the same.

The message layout looks as follows:

Offset Size Name Description

0 1 Endpoint ID 0x01 : Device Management Services

1 1 Message ID 0x27 : AES Decryption Error Indication

2 1 Payload

Length

Length = 9 bytes

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 36

3 9 Payload WM-Bus Header of received packet :

WM-Bus C-Field (1 Octet)

WM-Bus Man ID (2 Octets)

WM-Bus Device ID (4 Octets)

WM-Bus Version (1 Octet)

WM-Bus Device Type (1 Octet)

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 37

2.3 Data Link Services

The Radio Link endpoint provides services for transmission and reception of

radio link messages according to EN 13757 part 4.

2.3.1 Send Message

This command can be used to send an M-Bus message containing header

and payload via radio link. The first octet of the HCI payload is expected to

be the C- Field of the M-Bus message. The CRC16 of each M-Bus Data Block

and the M-Bus Length Field will be calculated and inserted by the firmware

itself.

The following figure shows the relationship between an HCI message and the

resulting M-Bus message which is sent via radio link. The message in this

example consists of two M-Bus Data Blocks.

Length

Field

8 Bit

C Field

8 Bit

M Field

2 * 8 Bit

A Field

6 * 8 Bit

CRC

Field

2 * 8 Bit

CI Field Data Field

15 * 8 Bit8 Bit

CRC

Field

2 * 8 Bit

Data Field

(((Length – 9) Mod 16) – 1) * 8 Bit

CRC

Field

2 * 8 Bit

SOF
Payload

Field

FCS

(optional)

8 Bit n * 8 Bit 16 Bit

Msg Header

Field

24 Bit

CI Field

8 Bit

Data Block 1 Data Block 2

15 * 8 Bit (((Length – 9) Mod 16) – 1) * 8 Bit

A FieldM FieldC Field

8 Bit 2 * 8 Bit 6 * 8 Bit

HCI Message

M-Bus Message

Fig. 2-4: HCI and M-Bus message (Telegram Format A)

Prototype

- bool WMBus_SendMessage(TWMBusHandle handle,

 UINT8* payload,

 UINT8 length)

Parameter

- handle communication handle

- payload point to M-Bus message

- length number of message bytes

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 38

Return Value

- true message transmitted

- false error

2.3.2 Message Reception

The received Radio Link Message can be read by means of the function

WMBus_GetHCIMessage. The messages have an Endpoint Identifier value

0x02 = Radio Link Services.

The radio message layout looks as follows:

Offset Size Name Description

0 1 Endpoint ID 0x02 : Radio Link Services

1 1 Message ID 0x03 : Radio Message Indication

2 1 Payload

Length

Length = Size of Payload Field in bytes

3 N Payload Radio Message starting with C-Field

N + 3 1 [RSSI] optional RSSI value (see device

configuration)

2.3.3 WM-Bus Data Request

This message can be used to send data as M-Bus message via radio link. The

first octet of the HCI payload is expected to be the CI- Field of the M-Bus

message. The M-Bus Header Fields (C-Field , M-Field and A-Field) are taken

from the configuration memory and can be modified via Device

Configuration. The CRC16 of each M-Bus block and the M-Bus Length Field will

be calculated and inserted by the firmware itself.

Length

Field

8 Bit

C Field

8 Bit

M Field

2 * 8 Bit

A Field

6 * 8 Bit

CRC

Field

2 * 8 Bit

CI Field Data Field

15 * 8 Bit8 Bit

CRC

Field

2 * 8 Bit

Data Field

(((Length – 9) Mod 16) – 1) * 8 Bit

CRC

Field

2 * 8 Bit

SOF
Payload

Field

FCS

(optional)

8 Bit n * 8 Bit 16 Bit

Msg Header

Field

24 Bit

CI Field

8 Bit

Data Block 1 Data Block 2

15 * 8 Bit (((Length – 9) Mod 16) – 1) * 8 Bit

HCI Message

M-Bus Message

WM-Bus Header

Device Config

Fig. 2-5: WM-Bus Data Request Format (Telegram Format A)

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 39

Prototype

- bool WMBus_SendData(TWMBusHandle handle,

 UINT8* payload,

 UINT8 length)

Parameter

- handle communication handle

- payload point to M-Bus message data block

- length number of message bytes

Return Value

- true message transmitted

- false error

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 40

2.4 Radio Link Test

The Radio Link Test feature can be used to analyze the radio link quality in a

given environment. The test enables to measure the Packet Error Rate (PER)

and RSSI level. The test can be started with several parameters by the Host

Controller. The test operation is controlled by the connected WM-Bus Module

itself. A second WM-Bus Module in range is required, which is configured with

same Link Mode (S2, T2, R2, C2) and which operates in Other Mode. The local

connected module must be configured to Meter Mode.

Message Flow

Host

Controller

WM-Bus

Module A

(Meter, S2)

WM-Bus

Module B

(Other, S2)

HCI_Cmd (Start Test)

Send Test Msg(TxCounter)

Send Test Rsp(RxCounter)

Send Test Msg(TxCounter)

Send Test Rsp(RxCounter)

HCI_Ind(Test Status{TxCounter, RxCounter, Last_RSSI})

TxCounter += 1;

TxCounter += 1;

RxCounter += 1;

RxCounter += 1;

Last_RSSI = RxRSSI

Last_RSSI = RxRSSI

HCI_Ind(Test Status{TxCounter, RxCounter, Last_RSSI})

Send Test Msg(TxCounter)

Send Test Rsp(RxCounter)

TxCounter += 1;

...

...
RxCounter += 1;

Last_RSSI = RxRSSI

HCI_Rsp(Test started)

Fig. 2-6: Radio Link Test

During test operation the connected WM-Bus Module sends status messages

to the Host Controller approximately every 500ms. The Status Message

includes the following quality values:

 TxCounter - indicates the number of transmitted test messages

 RxCounter - indicates the number of received test messages

 estimated RSSI value from the last received radio message

The Packet Error Rate can be calculated by means of the following formula:

PER[%] = (1 – RxCounter/TxCounter) * 100

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 41

2.4.1 Start Radio Link Test

This function starts the packet error rate test.

Prototype

- bool WMBus_StartRadioLinkTest(TWMBusHandle handle,

 UINT16 mode,

 UINT16 numPackets,

 UINT16 packetSize,

 UINT16 txPeriod)

Parameter

- handle communication handle

- mode measurement mode:

 0 = single test run

 1 = repetitive test runs

- numPackets number of test packets to transmit

- packetSize packet length in bytes

- txPeriod time in milliseconds between two packets

Return Value

- true test started

- false error

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 42

2.4.2 Radio Link Test Status Message

The Radio Link Test Status Messages which can be read by means of the

function WMBus_GetHCIMessage, have an Endpoint Identifier value 0x03 =

Radio Link Test.

The status message layout looks as follows:

Offset Size Name Description

0 1 Endpoint ID 0x03 : Radio Link Test

1 1 Message ID 0x07 : Radio Linkt Test Status Indication

2 1 Payload

Length

Length = Size of Payload Field in bytes

3 1 Mode Requested Test Mode

4 2 TxCounter Number of transmitted test packets

6 2 RxCounter Number of received test packets from

peer device

7 1 RSSI Last received RSSI

2.4.3 Stop Radio Link Test

This function can be used to stop the packet error rate test.

Prototype

- bool WMBus_StopRadioLinkTest(TWMBusHandle handle)

Parameter

- handle communication handle

Return Value

- true test stopped

- false error

 Specification

Wireless M-Bus Host Controller Interface DLL Services

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 43

2.5 Hardware Test Functions

Hardware test functions are available within a specific Hardware Test

Firmware. Some test functions are also supported by the Standard Firmware

but they can only be executed when the device is set to the System

Operation Mode “Hardware Test” (see Set System Operation Mode).

2.5.1 Radio Test Functions

The firmware supports different radio test services which are described below:

2.5.1.1 Radio Test Request

This function activates/deactivates a certain Radio Test on the local

connected device.

Prototype

- bool WMBus_RFTestRequest(TWMBUSHandle handle,

 UINT8* parameter,

 UINT8 length)

Parameter

- handle communication handle

- parameter pointer to Radio Test parameter block

- length length of parameter block in bytes

Return Value

- true test started

- false error

2.5.1.2 Radio Test Parameter Block

The parameter block looks as follows:

Offset Size Name Description

0 1 Test Mode Type of RF Test:

0 : Stop test

1 : Start CW test

1 1 Reserved must be set to 0x00

2 1 Radio Channel Radio Channel (see device configuration)

3 1 Radio Power

Level

Radio Power Level (see device

configuration)

 Specification

Wireless M-Bus Host Controller Interface DLL Appendix

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 44

3. Appendix

3.1 List of Abbreviations

DIO Digital Input/Output

DLL Dynamic Link Library

FW Firmware

GPIO General Purpose Input/Output

HCI Host Controller Interface

HW Hardware

LPM Low Power Mode

RAM Random Access Memory

RF Radio Frequency

RSSI Received Signal Strength Indicator

RTC Real Time Clock

SPI Serial Peripheral Interface

SW Software

UART Universal Asynchronous Receiver/Transmitter

WM-Bus Wireless M-Bus

3.2 List of Figures

Fig. 1-1: Overview 4

Fig. 2-1: Overview 11

Fig. 2-2: Ping Request 14

Fig. 2-3: Reset Request 16

Fig. 2-4: HCI and M-Bus message (Telegram Format A) 37

Fig. 2-5: WM-Bus Data Request Format (Telegram Format A) 38

Fig. 2-6: Radio Link Test 40

 Specification

Wireless M-Bus Host Controller Interface DLL Regulatory Compliance Information

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 45

3.3 References

[1] WMBus_HCI_Spec_Vx_y.pdf

4. Regulatory Compliance Information

The use of radio frequencies is limited by national regulations. The radio

module has been designed to comply with the European Union’s R&TTE

(Radio & Telecommunications Terminal Equipment) directive 1999/5/EC and

can be used free of charge within the European Union. Nevertheless, restrictions

in terms of maximum allowed RF power or duty cycle may apply.

The radio module has been designed to be embedded into other products

(referred as “final products”). According to the R&TTE directive, the

declaration of compliance with essential requirements of the R&TTE directive

is within the responsibility of the manufacturer of the final product. A

declaration of conformity for the radio module is available from IMST GmbH

on request.

The applicable regulation requirements are subject to change. IMST GmbH

does not take any responsibility for the correctness and accuracy of the

aforementioned information. National laws and regulations, as well as their

interpretation can vary with the country. In case of uncertainty, it is

recommended to contact either IMST’s accredited Test Center or to consult

the local authorities of the relevant countries.

 Specification

Wireless M-Bus Host Controller Interface DLL Important Notice

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 46

5. Important Notice

5.1 Disclaimer

IMST GmbH points out that all information in this document is given on an “as

is” basis. No guarantee, neither explicit nor implicit is given for the correctness

at the time of publication. IMST GmbH reserves all rights to make corrections,

modifications, enhancements, and other changes to its products and services

at any time and to discontinue any product or service without prior notice. It is

recommended for customers to refer to the latest relevant information before

placing orders and to verify that such information is current and complete. All

products are sold and delivered subject to “General Terms and Conditions” of

IMST GmbH, supplied at the time of order acknowledgment.

IMST GmbH assumes no liability for the use of its products and does not grant

any licenses for its patent rights or for any other of its intellectual property

rights or third-party rights. It is the customer’s duty to bear responsibility for

compliance of systems or units in which products from IMST GmbH are

integrated with applicable legal regulations. Customers should provide

adequate design and operating safeguards to minimize the risks associated

with customer products and applications. The products are not approved for

use in life supporting systems or other systems whose malfunction could result

in personal injury to the user. Customers using the products within such

applications do so at their own risk.

Any reproduction of information in datasheets of IMST GmbH is permissible

only if reproduction is without alteration and is accompanied by all given

associated warranties, conditions, limitations, and notices. Any resale of IMST

GmbH products or services with statements different from or beyond the

parameters stated by IMST GmbH for that product/solution or service is not

allowed and voids all express and any implied warranties. The limitations on

liability in favor of IMST GmbH shall also affect its employees, executive

personnel and bodies in the same way. IMST GmbH is not responsible or liable

for any such wrong statements.

Copyright © 2011, IMST GmbH

5.2 Contact Information

IMST GmbH

Carl-Friedrich-Gauss-Str. 2-4

47475 Kamp-Lintfort

Germany

 Specification

Wireless M-Bus Host Controller Interface DLL Important Notice

WMBus_HCIDLL_Spec.docx, Wireless Solutions, v1.4 Page 47

T +49 2842 981 0

F +49 2842 981 299

E wimod@imst.de

I www.wireless-solutions.de

mailto:wimod@imst.de?subject=[WiMOD]
http://www.wireless-solutions.de/

