WIMOD DLL

Specification (V1.3, 2010-10-28)

IMST GmbH
Carl-Friedrich-Gauss-Str. 2-4
D-47475 Kamp-Lintfort

WiMOD DLL

Document History

Introduction

Date Version Chapter Comment
2009-06-10 | 0.1 All First version (KvW)
2010-01-07 (0.2 All Document format and title changed (KvW)
2010-03-22 |0.3 General WiMOD Device Get Device Info added
Functions
2010-08-18 |1.0 Data Exchange Services Minor changes
2010-10-13 | 1.1 Chapter 1.4 Operating Limitations for Windows XP added
System
2010-10-21 | 1.2 Chapter 2.1.1 New functions of DLL Release 1.24.0 added
Chapter 2.2.6 - Auto USB Detection enable function added
- WIMOD_GetHCIMessage added
2010-10-28 |1.3 Chapter 2.2.2 Reset WIiMOD _Reset corrected to WiMOD_ResetRequest

I
Iz

WIiMODDLL Spec.doc /2010-10-28/1.3

page 2 of 27

—~nZ—

WiMOD DLL

Table of Contents

1

INTRODUCTION

1.1 Purpose

1.2 Overview

1.3 Applicable Documents
1.4 Operating System

FUNCTIONS

2.1 General DLL Functions

2.1.1 WiMOD Connection Handle
2.1.1.1 Open Comport
2.1.1.2 Close Comport
2.1.1.3 Discover Devices
2.1.1.4 Get Discovered Devices
2.1.1.5 Enable/Disable Automatic USB Discovery

2.1.2 Error Handling
2.1.2.1 Get Last Error
2.1.2.2 Get Error String
2.1.2.3 Error Codes and Strings

2.1.3 Get DLL Version

2.1.4 Set Timeout

2.1.5 Register Message Handler

2.1.6 Shutdown

2.2 General WiMOD Device Functions

2.2.1 Ping

2.2.2 Reset Request

2.2.3 Device Information
2.2.3.1 Get Device Info
2.2.3.2 Device Information Block

2.2.4 Device Configuration
2.2.4.1 Get Device Parameter
2.2.4.2 Set Device Parameter
2.2.4.3 Device Parameter Block
2.2.4.4 Factory Reset

Introduction

WiMODDLL_Spec.doc /2010-10-28/1.3

page 3 of 27

O 0 0V 0 00 0 0 00 N N oo oo o

e e L L L T [o R U o e S S |
0O N NN OO0 O NN LON ==

WiMOD DLL

2.2.5 Operation Modes
2.2.5.1 Get System Operation Mode
2.2.5.2 Set Next Operation Mode
2.2.5.3 System Operation Modes
2.2.6 Data Exchange Services
2.2.6.1 Data Request
2.2.6.2 Get HCl Frame
2.2.6.3 TWIMODHCIFrame
2.2.6.4 Get HCl Message
2.2.6.5 Receiving User Defined Messages

3 IMPORTANT NOTICE
3.1 Disclaimer

3.2 Contact Information

Introduction

WiMODDLL_Spec.doc /2010-10-28/1.3

page 4 of 27

21
21
21
22
23
23
23
24
25
26

27
27
27

WiMOD DLL

Abbreviations

ADC Analog-to-Digital Converter
DIO Digital Input/Output

DLL Dynamic Link Library

FW Firmware

GPIO General Purpose Input/Output
HCI Host Controller Interface

HW Hardware

RF Radio Frequency

SPI Serial Peripheral Interface

SW Software

UART Universal Asynchronous Receiver/Transmitter
WiMOD Wireless Module

Introduction

WiMODDLL_Spec.doc /2010-10-28/1.3

page 5 of 27

WiMOD DLL Introduction

1 Introduction

1.1 Purpose
This document specifies the WiMOD Dynamic Link Library Application Interface.

1.2 Overview

This DLL enables Windows applications to configure and control several kinds of WiMOD
devices in an easy and common way without knowing the underlaying communication protocol
in detail.

Windows Host PC

WiMOD Studio $j

i I

WiMOD DLL API

User Application

Application

HCI Protocol

v

Serial COM Ports / TCP Sockets WIiMOD $j
Firmware

Windows

Fig. 1-1: Overview

Several service functions are implemented which create the required Host Controller Interface
(HCI) messages and use the WiMOD HCI Protocol to communicated with an attached WiMOD
device. These HCI messages will be send through an open communication channel which could
be a Serial Comport (COM1...X) or an TCP Socket.

WiMODDLL Spec.doc /2010-10-28/1.3 page 6 of 27

WiMOD DLL

1.3 Applicable Documents

1] WIiMODHCI Spec.pdf
2] iMxxx_Data_Sheet.pdf
[3] iMxxx_Settings.pdf

[4] WiMODDLL Spec.pdf

1.4 Operating System

Introduction

Specification of the WiMOD Host Controller
Interface.

Data sheet for the corresponding device xxx

Parameter Settings and Examples for the
corresponding device xxx

Specification of the WiMOD DLL

The WiMODHCI.DLL is developed and tested for Microsoft Windows XP (SP3).

WiMODDLL_Spec.doc /2010-10-28/1.3

page 7 of 27

WiMOD DLL Functions

2 Functions

This chapter outlines the supported DLL functions which are subdivided into the following
functional groups:

e General DLL Functions which are not related to a WiMOD device
e General WiMOD Device Functions which are common to all WiMOD devices

2.1 General DLL Functions
This chapter covers functions which are only related to the WiMOD DLL itself.

2.1.1 WiMOD Connection Handle

The basic mean for communication with a dedicated connected WiMOD device is a WiMOD
Connection Handle (TWiMODHandle). A handle can be obtained by different services which are
listed below. In general the WiMOD DLL supports access to multiple connected WiMOD
devices.

2.1.1.1 Open Comport

This function opens a Serial Communication Port. On success the function returns a WiMOD
Connection Handle which can be used to communicate with the connected WiMOD.

Prototype
- TWiMODHandle WiMOD Open(const char *comPort)

Parameter

- comPort pointer to Comport name e.g. “COM1”

Return Value
-0 invalid handle

- else valid handle

Note: TWiMODHandle is defined as unsigned long

2.1.1.2 Close Comport

This function closes an open Communication Port.

Prototype

WiMODDLL Spec.doc /2010-10-28/1.3 page 8 of 27

WiMOD DLL Functions

- bool WIMOD_Close(TWiIMODHandle handle)

Parameter

- handle communication handle

Return Value

- frue comport closed
- false error
2.1.1.3 Discover Devices

This function starts a device discovery procedure which checks for connected WiMOD devices.
The procedure is implemented as a background task and iterates over all available Serial
Comports which are listed in the Windows Registry. Each available Serial Comport will be
opened and a Ping command will be send to test if @ WiMOD is connected. After finishing the
procedure sends a message (WIMOD MSG DEVICE CHANGE IND) to a registered message
handler to indicate that the result can be read now by means of the function
WIiMOD_GetDiscoveredDevices.

Prototype
bool WIMOD_ DiscoverDevices()

Parameter

- none

Return Value
- true procedure started

- false procedure not started

Note: The Device Discovery procedure can also start automatically (see
WIiMOD_EnableAutoUSBDiscovery) if a USB device is connected or disconnected to the
Windows-PC.

2.1.1.4 Get Discovered Devices

This function returns a list with WiMOD Connection Handles of currently connected WiMOD
devices. The list is automatically updated due to one of the following events:

- WiMOD_DiscoverDevices called by user
- USB Device Change Windows messages
- WiMOD TCP Socket connection / disconnection if Server Mode is enabled

WiMODDLL Spec.doc /2010-10-28/1.3 page 9 of 27

WiMOD DLL Functions

Prototype

- UINT32 WiMOD _ GetDiscoveredDevices(TWiMODHandle* handles,
UINT32 numHandles)

Parameter

- handles pointer to an array for handles

- numHandles maximum number of array entries

Return Value
- number of discovered devices

- updated handle array

2.1.1.5 Enable/Disable Automatic USB Discovery

This function enables/disables the automatic Device Discovery procedure. In case of a
connecting or disconnecting USB device the DLL starts the discovery procedure automatically.
After finishing a message (WIMOD MSG DEVICE CHANGE IND) is sent to a registered
message handler to indicate that the result can be read now by means of the function

WiMOD_GetDiscoveredDevices.

Prototype
bool WIMOD_EnableAutoUSBDiscovery(bool enable)

Parameter
- enable true: feature enabled

false: feature disabled
Return Value
- true feature enabled/disabled

- false error

Note: This function is available in DLL Release 1.24.0

WiMODDLL Spec.doc /2010-10-28/1.3 page 10 of 27

WiMOD DLL Functions

2.1.2 Error Handling

Most of the provided DLL functions simply return the boolean value false in case of an error or
true in case of success. The detailed error reason is stored within the DLL and can be readout
and translated into a human readable error string.

2.1.2.1 Get Last Error

This function returns the error code of the last triggered function.

Prototype
- TWiMODHCIError WiMOD_ GetLastError(TWiMODHandle handle)

Parameter

- handle communication handle

Return Value

- error code

2.1.2.2 Get Error String

Error codes can be translated in human readable error strings by means of the following
function.

Prototype

- void WiMOD _GetErrorString (TWiMODHCIError error,
char* resultString,
int size)

Parameter

- error an error code

- resultString poinfer to an character array

- size size in bytes of the character array

Note: A size of at least 64 byte is recommended.

Return Value

- an updated resultString

WIMODDLL Spec.doc /2010-10-28/1.3 page 11 of 27

WiMOD DLL

2.1.23

The following table shows the implemented error codes and strings:

Error Codes and Strings

Functions

Error Codes Error Strings

0 “WIMOD_NO_ERROR"”

1 "WIMOD_INVALID_COMPORT"

2 "WIMOD_CONNECTION_BUSY"

3 "WIMOD_INVALID_HANDLE"

4 “WIMOD_NO_RESPONSE"

5 "WIMOD_TRANSMIT_ERROR”

6 "WIMOD_UNEXPECTED_FRAMELENGTH"

7 "WIMOD_COMMAND_NOT_SUPPORTED"

8 "WIMOD_COMMAND_FAILED"

9 "WIMOD_UNEXPECTED_STATUS"

10 "WIMOD_UNEXPECTED_RESPONSE_CODE"
11 "WIMOD_FWDL_PAGE_CRC_ERROR"

12 "WIMOD_FWDL_PAGE_ADDRESS_ERROR"
13 "WIMOD_FWDL_FIRMWARE_CRC_ERROR"
14 "WIMOD_FWDL_UNKNOWN_ERROR"

15 "WIMOD_FWDL_TIMEOUT_ERROR"

16 "WIMOD_FWDL_INPUT_FILE_ERROR"

17 "WIMOD_UNEXPECTED_COMMAND_ERROR"
18 "WIMOD_INVALID_PARAMETER"

19 "WIMOD_HOST_PROTOCOL_OUTDATED"
20 "WIMOD_FIRMWARE_PROTOCOL_OUTDATED"
21 "WIMOD_FWDL_UNSUPPORTED_WIMOD"

WIiMODDLL Spec.doc /2010-10-28/1.3

page 12 of 27

(A

—~nZ—

WiMOD DLL

2.1.3 Get DLL Version

This function returns the DLL Version string.

Prototype

- bool WIMOD_GetDLLVersion(char* resultString,
int size)

Parameter

- resultString pointer to an character array

- size size in byte of the character array

Note: A size of at least 32 byte is recommended.

Return Value
- frue an updated resultString

- false resultString size to small

2.1.4 Set Timeout

Functions

After sending a HCl Command message the DLL is waiting for a device response. The maximum

wait time in milliseconds can be configured by means of this function.

Prototype

- bool WIMOD _ SetTimeout(TWiMODHandle handle,
UINT32 timeout)

Parameter

- handle communication handle

- timeout timeout in milliseconds

Note: the default value is 500 ms

Return Value
- true parameter changed

- false error

WiMODDLL_Spec.doc /2010-10-28/1.3

page 13 of 27

WiMOD DLL Functions

2.1.5 Register Message Handler

Most of the service functions are processed in a synchronous way i.e. a function doesn’t return
until @ WiMOD device response was received or a configurable timeout expires.

For asynchronous communication an application can register a message handler to listen for
several kinds of messages which are generated within the DLL. The message handler will receive
2 different parameters when called, the message type (msg) and a generic parameter (param)
with different meaning depending on the given message type.

Prototype
- void WiMOD RegisterMsgHandler (TWiMOD CbMsgHandler ~ cbMsgHandler)

Parameter

- cbMsgHandler pointer to message handler procedure

The function pointer type is defined as follows:
typedef void (*TWIMOD_ CbMsgHandler)(UINT32 msg, UINT32 param)

Return Value

- none

The following messages are implemented:

Message Value Parameter Description
WIMOD MSG DEBUG IND 0x00000001 | none a debug message is available
WIMOD_MSG_DEVICE_CHANGE _IND | 0x00000002 | None a WiMOD device has connected /

disconnected

WIMOD MSG HCI MESSAGE IND 0x00000004 | Handle a HCl message is available and
should be read by means of function

WIiMOD_GetHCIMessage

2.1.6 Shutdown

An application should call the Shutdown function so that the DLL can close all connections and
release all allocated system resources.

Prototype
- bool WiMOD_DLLShutdown()

WiMODDLL Spec.doc /2010-10-28/1.3 page 14 of 27

WiMOD DLL

Parameter

- none

Return Value

- always true

2.2 General WiMOD Device Functions

2.2.1 Ping

Functions

This function can be used to check the wired communication interface. A “Ping Command”
message is send to the local connected device which answers with a “Ping Response” message.

Prototype
- bool WIMOD_Ping(TWiMODHandle handle)

Parameter

- handle communication handle

Return Value
- true device connected and alive

- false error

2.2.2 Reset Request
This function can be used to reset a WiMOD device.

Prototype

- bool WIMOD _ResetRequest(TWiMODHandle* handle)
Parameter

- handle communication handle

Return Value
- true device will be reset in approx. 500ms

- false error

WiMODDLL_Spec.doc /2010-10-28/1.3

page 15 of 27

WiMOD DLL Functions

2.2.3 Device Information

For identification purpose the WiMOD Firmware provides a service to readout some information
elements e.g. Module Type, Firmware Version.

2.2.3.1 Get Device Info

This command returns the basic device information block.

Prototype

- bool WIMOD_ GetDevicelnfo(TWiMODHandle* handle,
TWIiMODDevicelnfo* devicelnfo)

Parameter

- handle communication handle

- devicelnfo pointer to device info structure

Return Value

- true updated device info structure
- false error
2.2.3.2 Device Information Block

The Device Info structure contains the following information elements:

typedef struct
{
UINT16 DeviceAddress; // 16-Bit Device Address
UINT8 ModuleType; // Module Identifier
UINT8 DeviceMode; // Device Mode Identifier
UINT8 FWVersion; // Firmware Version
UINT8 HClIProtocolVersion; // HCI Protocol Version
FTWIMODDevicelnfo;
Parameter Description
Device Address Unique 16-Bit value for addressing purpose
Module Type 8-Bit value which identifies the connected WiMOD device:
The following Modules are supported:
iIM820A @ 1
iIM240A : 3
iIM86OA : 7
Device Mode 8-Bit value which identifies the configured device mode
(see Device Parameter Block for details)

WiMODDLL Spec.doc /2010-10-28/1.3 page 16 of 27

WiMOD DLL Functions

FWVersion 8-Bit value which identifies the programmed firmware:
Bits 7..4 -> major FW Version number
Bits 3..0 -> minor FW Version number
Example: Ox14 -> FW Version = 1.4

HCIProtocolVersion This value will be incremented on either DLL side or Firmware side
to indicate an incompatibility within the underlying HCI protocol
(see WiMOD Error Codes). An error code will be returned if the
DLL detects a mismatch to the protocol of the connected WiMOD
(see Error Codes).

2.2.4 Device Configuration

The WiIMOD Firmware supports several kinds of configurable system parameters which are
stored in a non volatile parameter memory e.g. Flash or EEPROM depending on the module
type. The configuration parameters are readout during WiMOD start-up and used to configure
the firmware components and the hardware units.

2.2.4.1 Get Device Parameter

This function can be used to readout the configuration parameters.

Prototype

- bool WIMOD_ GetDeviceParam(TWiMODHandle* handle,
TWiMODDeviceParam* deviceParam)

Parameter

- handle communication handle

- deviceParam pointer to device parameter structure

Return Value

- true updated device parameter structure
- false error
2.2.4.2 Set Device Parameter

This function can be used to change several system parameters which are stored in a none
volatile memory (e.g. Flash or EEPROM). The new values are used after a system reset.

Prototype

- bool WIMOD _SetDeviceParam(TWiMODHandle* handle,
TWiMODDeviceParam* deviceParam)

Parameter

WiMODDLL Spec.doc /2010-10-28/1.3 page 17 of 27

WiMOD DLL Functions

- handle communication handle

- deviceParam pointer to device parameter structure
Return Value
- true device parameter stored in memory

- false error

Note: To activate a new parameter set a Reset Command must be executed.

2.2.4.3 Device Parameter Block

The device parameter structure contains the following information elements:

typedef struct
{
UINT8 IIFlag; // Information Indicator Flag
UINT8 Reserved 1; // reserved: must be set to zero (0)
UINT8 NetworkAddress; // Network Address (0xO1 .. OxFE)
UINT16 DeviceAddress; // Device Address (0x0001 .. OxFFFE)
UINT8 RF DataRate; // RF Datarate
UINT8 RF Powerlevel; // RF Powerlevel
UINT8 RF_Channel; // RF Channel
UINT8 DeviceMode; // Device Mode
UINT8 AckNumRetries; // Number of retries for acknowledged data exchange
UINT8 AckTimeoutTicks; // Acknowledge Timeout in 10ms ticks
UINT8 Reserved 2; // reserved: must be set to zero (0)
UINT8 Reserved 3; // reserved: must be set to zero (0)
UINT8 Reserved 4; // reserved: must be set to zero (0)
FTWIMODDeviceParam;

The following parameters are device specific and can be found in [3]:

Parameter Description

RF_DataRate Index for RF Datarate
RF_Powerlevel Index for RF Powerlevel
RF_Channel Index for RF Channel

WiMODDLL Spec.doc /2010-10-28/1.3 page 18 of 27

WiMOD DLL

The following parameters are common to all WiMODs:

Parameter Description

lIFlag Information Identifier Flag (Bits 7..0):
This bit field defines which of the parameters within the structure
are valid. Only those parameters are recognized whose
corresponding IIFlag-Bit is set to 1. A parameter with lIFlag-Bit
cleared will not be transmitted to the connected WiMOD device.
Bit 0: Network Address
Bit 1: Device Address
Bit 2: RF DataRate
Bit 3: RF Powerlevel
Bit 4: RF Channel
Bit 5: DeviceMode
Bit 6: AckNumRetries
Bit 7: AckTimeoutTicks
NetworkAddress A Network Address is used to separate groups of WiMODs from
each other. A device accepts RF messages which contain its own
Network Address or the BROADCAST NETWORK ADDRESS
OxFF.
The values 0 and OxFF are reserved.
Note: Sniffer devices perform no Network Address filtering.
DeviceAddress The Device Address is used to address a certain device within a
group of devices with same RF settings. Therefore the device
address must be set to a unique value to ensure proper operation.
A device accepts RF messages which contain its own Device
Address or the BROADCAST DEVICE ADDRESS OxFFFF
The values O and OxFFFF are reserved.
Note: Repeater devices and Sniffer devices perform no Device
Address filtering
DeviceMode The firmware provides different RF operation modes:
0 = End Device (Default Configuration)
1 = Reserved
2 = Repeater: device which simply retransmits every received
message
3 = Sniffer: sends every received message fo its connected host
AckNumRetries Defines the maximum number of retransmissions for RF messages
send by means of WiMOD_DataRequest with ackFlag = true.
AckTimeoutTicks Defines the timeout window (in 10ms ticks) the sender is waiting
for an ACK message before a possible retransmission is initiated

Functions

WiMODDLL_Spec.doc /2010-10-28/1.3

page 19 of 27

WiMOD DLL Functions

2.2.4.4 Factory Reset

This function can be used to reset the WiMOD device configuration to its default factory settings.
A configured device address will not be changed by this function.

Note: The new configuration gets active after reboot.

Prototype

- bool WIMOD_ FactoryReset(TWiMODHandle* handle,
bool rebootFlag)

Parameter

- handle communication handle

- rebootFlag indicates if the device should reboot

Return Value

- true device configuration reset

- false error

Note: The default values are module specific and can be found in [3].

WiMODDLL Spec.doc /2010-10-28/1.3 page 20 of 27

WiMOD DLL Functions

2.2.5 Operation Modes

The WiMOD firmware can operate in different kind of System Operation Modes. The operation
modes enable the device to align its behaviour according to a given use case e.g. test mode,
application mode. The system operation mode is determined during WiMOD start-up and
requires a reset to get changed.

2.2.5.1 Get System Operation Mode

The following function returns the current System Operation Mode.

Prototype

- bool WIMOD_GetOpMode(TWiMODHandle handle,
UINT8* opMode);

Parameter

- handle communication handle

- opMode pointer to return value

Return Value

- true operation mode read

- false error

2252 Set Next Operation Mode

This function sets the next System Operation Mode which gets active after reset.

Prototype

- bool WIMOD _SetNextOpMode(TWiIMODHandle handle,
UINT8 nextOpMode,
const char* password,
bool rebootFlag);

Parameter

- handle communication handle

- nextOpMode next System Operation Mode

- password password string

- rebootFlag indicates if system should reboot or not

Return Value

WIMODDLL Spec.doc /2010-10-28/1.3 page 21 of 27

WiMOD DLL Functions

- true operation mode set
- false error

Note: This function requires a password. A reboot takes place after approx. 500ms.

2253 System Operation Modes
The following System Operation Modes are supported:

Value Description

0 Standard Application Mode / Default Mode
1 Hardware Test Mode

2 Production Mode

3 Self test Mode

WIiMODDLL Spec.doc /2010-10-28/1.3 page 22 of 27

WiMOD DLL Functions

2.2.6 Data Exchange Services

The following functions are available to send RF messages from one host device to another.

2.2.6.1 Data Request

This function can be used to send user defined messages to a given destination (peer) device.

Prototype

- bool WIMOD_DataRequest(TWiMODHandle handle,
UINT16 dstDevice,
UINT8 length,
UINT8* payload,
bool ackFlag);

Parameter

- handle communication handle

- dstDevice address of destination (WiMOD) device

- length number of bytes in aftached payload

- payload pointer to payload

- ackFlag switch for data service type:

false: data packet will be sent without acknowledgement / retransmissions

true: data packet will be sent with acknowledgement / retransmissions

Note: The number of retransmissions is configurable (see Set Device Parameter).

Return Value
- true transmission started

- false error

2.2.6.2 Get HCI Frame

A WIMOD device is allowed to send HCI event messages to its host at any time. Those
messages which are not a response to a preceding command message are buffered within the
DLL. For each buffered message a notification is send to the registered message handler (see
Register Message Handler). This client should readout the buffered HCI message by means of
the following function. RF messages witch are send by means of WiMOD_DataRequest from
another Host PC will be handled in the same way.

WiMODDLL Spec.doc /2010-10-28/1.3 page 23 of 27

WiMOD DLL Functions

Prototype

- bool WIMOD_GetHCIFrame(TWiMODHandle* handle,
TWIiMODHCIFrame* hciFrame)

Parameter

- handle communication handle

- hciFrame pointer to hciFrame

Return Value
- true message readout successfully

- false error, no message/frame available

Note: This function might be called periodically to poll for buffered messages if message
handler registration can not be realized.

2.2.63 TWIiMODHCIFrame
The WiMOD HCI message format includes the following elements

typedef struct

{
UINT8 Resl; // Reserved
UINT8 Res2; // Reserved
UINT8 DstlD; // Destination Endpoint Identifier
UINT8 SrcID; // Source Endpoint Identifier
UINT8 MsglID; // Message |dentifier
UINT8 Length; // Size of Payload
UINT8 Payload[256]; // Payload Field (max. 256 Bytes)
UINT16 Res3; // Reserved
UINT8 Res4; // Reserved

FTWIMODHCIFrame;

Parameter Description

DstID Destination Endpoint Identifier:

Identifies the logical receiver endpoint of a given HCI message

SrcID Source Endpoint identifier

|dentifies the logical sender endpoint of a given HC| message

MsglD Identifies the type of a HCl message

WiMODDLL Spec.doc /2010-10-28/1.3 page 24 of 27

WiMOD DLL Functions

Length Defines the number of valid bytes within the reserved payload field

Payload Field for message dependend data

Note: DstlD and SrcID are used to implement independent service access points

2.2.6.4 Get HCI Message

This function can be used as an alternative to GetHCIFrame. The user can pass a pointer to a
character array instead of a TWiIMODHCIFrame structure.

This function is availabe in DLL Release 1.24.0

Prototype

- bool WIMOD _GetHCIMessage (TWiMODHandle* handle,
UINT8* msgBuffer,
UINT16 bufferSize)

Parameter

- handle communication handle

- msgBuffer pointer to message buffer

- bufferSize size of message buffer

Return Value

- true message readout successfully

- false error, no message/frame available

Message Buffer Layout

The msgBuffer looks as follows after successful receiption:

Offset Content

0x00 DstID = Destination Endpoint Identifier
0x01 SrcID = Source Endpoint Identifier
0x02 MsglD = Message Identifier

0x03 Length = Size of Payload Field in bytes
0x04 ... Message dependend Payload Field

Note: A bufferSize of 256 Byte is recommended. I
M

ff y

AT

WIiMODDLL Spec.doc /2010-10-28/1.3 page 25 of 27

WiMOD DLL Functions

2.2.6.5 Receiving User Defined Messages

HCI messages which are transmitted by means of WiMOD_DataRequest from one Host PC can
be readout by means of WIMOD GetHCIMessage on the receiver side. These messages carry
the DstlD = O0x91 (DATAEXCHANGE ID) and MsglD = 0x03 (UDATA INDICIATION) or 0x06

(RDATA INDICATION). Furthermore the first two bytes of the Payload field contain the device
address of the sender device.

WiMODDLL Spec.doc /2010-10-28/1.3 page 26 of 27

WiMOD DLL Important Notice

3 Important Notice

3.1 Disclaimer

IMST GmbH points out that all information in this document is given on an “as is” basis. No
guarantee, neither explicit nor implicit is given for the correctness at the time of publication.
IMST GmbH reserves all rights to make corrections, modifications, enhancements, and other
changes to its products and services at any time and to discontinue any product or service
without prior nofice. It is recommended for customers to refer to the latest relevant information
before placing orders and to verify that such information is current and complete. All products
are sold and delivered subject to “General Terms and Conditions” of IMST GmbH, supplied at
the time of order acknowledgment.

IMST GmbH assumes no liability for the use of its products and does not grant any licenses for
its patent rights or for any other of its intellectual property rights or third-party rights. It is the
customer’s duty to bear responsibility for compliance of systems or units in which products from
IMST GmbH are integrated with applicable legal regulations. Customers should provide
adequate design and operating safeguards to minimize the risks associated with customer
products and applications. The products are not approved for use in life supporting systems or
other systems whose malfunction could result in personal injury to the user. Customers using the
products within such applications do so at their own risk.

Any reproduction of information in datasheets of IMST GmbH is permissible only if reproduction
is without alteration and is accompanied by all given associated warranties, conditions,
limitations, and notices. Any resale of IMST GmbH products or services with statements different
from or beyond the parameters stated by IMST GmbH for that product/solution or service is not
allowed and voids all express and any implied warranties. The limitations on liability in favor of
IMST GmbH shall also affect its employees, executive personnel and bodies in the same way.
IMST GmbH is not responsible or liable for any such wrong statements.

Contact us to get information about the Declaration of Conformity.
Copyright © 2009, IMST GmbH

3.2 Contact Information
IMST GmbH

Carl-Friedrich-Gauss-Str. 2
47475 Kamp-Lintfort

Germany
T +49 2842 981 0 E wimod@imst.de
F +49 2842 981 299 | www.wireless-solutions.de

WiMODDLL Spec.doc /2010-10-28/1.3 page 27 of 27

