
WiMOD iM980B-MBand

Datasheet

Document ID: 4100/40140/0174

IMST GmbH

Carl-Friedrich-Gauß-Str. 2-4 47475 KAMP-LINTFORT GERMANY

Document Information

File name	iM980B-MBand_Datasheet.docx			
Created	2021-11-17			
Total pages	30			

Revision History

Version	Note			
0.1	Created			
0.2	Chapter 0			
0.3	Document name changed			
0.4	Adapted SF for ProLink operation mode			
0.5	Updated max. conducted output power			
1.0	Update to fit FCC / IC requirements			
1.1	 Labelling Requirements for Host Device moved to chapter 7.1 Chapter 7.2 added Chapter 7 and 8.1 updated 			
1.2	FCC ID included			

Aim of this Document

The aim of this document is to give a detailed product description including interfaces, features and performance of component iM980B-MBand. iM980B-MBand supports **M**ultiple **Band**s

- LoRaWAN US902-928 MHz and ProLink US903.0-914.2 MHz
- LoRaWAN AU915-928 MHz and ProLink AU915.9-927.1 MHz

It is a combination of the radio module iM980B with the firmware ProLink LoRaWAN EndNode Modem MBAND iM980B V3 0.hex

Table of Contents

1.	Introduction	4
	1.1 Key Features	4
	1.2 Applications	4
2.	MODULE OVERVIEW	5
3.	LoRa Modulation Technique	6
	3.1 Channel Frequencies, Data Rates and Output Power	6
	3.1.1 LoRaWAN US902-928MHz	6
	3.1.2 LoRaWAN AU915-928MHz	7
	3.1.3 ProLink 902-928MHz	8
4.	ELECTRICAL CHARACTERISTICS	9
	4.1 Absolute Maximum Ratings	9
	4.2 Global Electrical Characteristics	10
	4.3 Module Interface Characteristics	11
	4.4 RF Characteristics	12
	4.4.1 Applicable Frequency Bands and Sub-Bands	12
	4.4.2 Transmitter RF Characteristics	12
5.	MODULE PACKAGE	14
	5.1 Pinout Description	14
	5.2 Module Dimensions	16
	5.3 Recommended Footprint	16
6.	MODULE INTERFACE CHARACTERISTICS	17
	6.1 Programming Interface	17
7.	INTEGRATION INSTRUCTIONS	18
	7.1 Labelling Requirements for Host Device	18
	7.2 Host Device User Manual	18
	7.3 Common PCB Design Recommendations	19
	7.4 Integration Procedures	19
	7.5 Trace Antenna Requirements	20
	7.6 Typical Application Schematic	21
	7.7 Recommended Soldering Conditions	22

8.	REGULATORY COMPLIANCE INFORMATION	23
	8.1 FCC Regulatory Notices	23
	8.2 Industry Canada Statement	24
9.	Ordering Information	26
10). APPENDIX	27
	10.1 List of Abbreviations	27
	10.2 List of Figures	28
	10.3 List of Tables	28
	10.4 References	28
11	. IMPORTANT NOTICE	29
	11.1 Disclaimer	29
	11.2 Contact Information	29

1. Introduction

The iM980B-MBand is a compact, low power, bidirectional radio module for the 902-928 MHz frequency band using Semtech's LoRaTM modulation technology. The module provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption. Using the iM980B-MBand in an application minimizes the need for an expensive and time-consuming RF development. Fast time to market is possible with this pre-qualified module.

Figure 1-1: Picture of iM980B-MBand

1.1 Key Features

- Compact module 20.0 x 25.0 x 3.3 mm
- LoRaTM modulation technology
- Sensitivity down to -138 dBm
- UART, SPI and I²C interface¹
- Digital inputs and outputs
- Supply voltage range from 2.4 to 3.6 V
- RF interface optimized to 50 Ω
- Integrated 20 dBm Power Amplifier
- High link budget up to 155 dB
- Range up to 15000m (Line of Sight)
- STM32L151CxU6Axx
- Certified according to FCC ID: Q9B-IM980B
- Supporting: LoRaWAN US902-915MHz, AU915-928MHz and ProLink 902-928MHz

1.2 Applications

- Automated Meter Reading
- Wireless Networks
- Home-, Building-, Industrial automation
- Remote Control
- Wireless Sensors
- Telemetry
- Wireless Alarm and Security Systems
- ...

Please visit our web site www.wireless-solutions.de for more information.

¹ Default host controller interface is UART. SPI and I²C functionality available on request.

2. Module Overview

The iM980B-MBand is an ultra-long range, high-performance, pre-certified module for wireless communication. It operates in the license free 902-928 MHz ISM frequency band and includes all necessary passive components for wireless communication as depicted in the following figure.

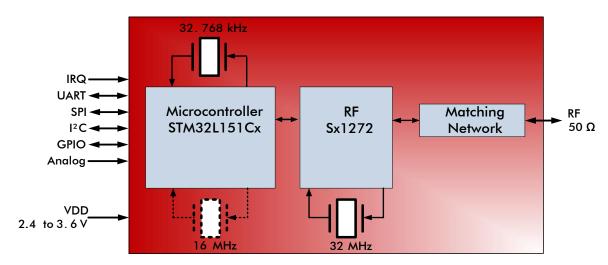


Figure 2-1: Block Diagram of Radio Module iM980B-MBand

The iM980B-MBand uses Semtech's patented LoRa modulation technique which combines spread spectrum modulation and forward error correction techniques to increase the range and robustness of radio communication links compared with traditional FSK or OOK based modulation. Typically examples of iM980B-MBand receive performances are given in the following table.

Signal Bandwidth/[kHz]	Spreading Factor	Sensitivity/[dBm]
125	7	-123
125	12	-137
500	7	-115
500	12	-130

Table 2-1: Typically Radio Performance of iM980B-MBand

This high sensitivity combined with the integrated power amplifier yields industry leading link budget.

The module is solderable like a SMD component and can easily be mounted on a simple carrier board with a minimum of required external connections. It is RoHS compliant, qualified in accordance to FCC Part 15 and ISED's licence-exempt RSSs.

3. LoRa Modulation Technique

The iM980B-MBand uses Semtech's LoRa proprietary spread spectrum modulation technique. This modulation, in contrast to conventional modulation techniques, permits an increase in link budget and increased immunity to in-band interference. It achieves sensitivities 8 dB better than FSK modulation.

3.1 Channel Frequencies, Data Rates and Output Power

The iM980B-MBand uses the following channel set up.

3.1.1 LoRaWAN US902-928MHz

- Uplink (Tx) 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR3, using coding rate 4/5, starting at 902.3 MHz and incrementing linearly by 200 kHz to 914.9 MHz. Those channels can be used with max. RF output power.
- Uplink (Tx) 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR4 starting at 903.0 MHz and incrementing linearly by 1.6 MHz to 914.2 MHz. Those channels can be used with max. RF output power.
- Downlink (Rx) 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13 starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

Data Rate	Settings	Physical Bit Rate [bit/s]
0	LoRa: SF10 / 125 kHz	980
1	LoRa: SF9 / 125 kHz	1760
2	LoRa: SF8 / 125 kHz	3125
3	LoRa: SF7 / 125 kHz	5470
4	LoRa: SF8 / 500 kHz	12500
5:7	For future use	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500
13	LoRa: SF7 / 500 kHz	21900
14:15	For future use	

3.1.2 LoRaWAN AU915-928MHz

- Uplink (Tx) 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR2 to DR5, using coding rate 4/5, starting at 915.2 MHz and incrementing linearly by 200 kHz to 927.8 MHz. Those channels can be used with max. RF output power¹.
- Uplink (Tx) 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR6 starting at 915.9 MHz and incrementing linearly by 1.6 MHz to 927.1 MHz. Those channels can be used with max. RF output power.
- Downlink (Rx) 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13 starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

Data Rate	Settings	Physical Bit Rate [bit/s]
0	Not used	
1	Not used	
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF8 / 500 kHz	12500
7	Not used	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500
13	LoRa: SF7 / 500 kHz	21900
14:15	Not used	

¹ The highest channel is reduced by 2.6dB

3.1.3 ProLink 902-928MHz

ProLink is a proprietary link. It can be used in P2P or P2multiPoint communication between end devices and can be used in addition to the US902-915MHz and the AU915-928MHz LoRaWAN operating mode.

- Prolink US: Uplink/Downlink (Tx/Rx) 8 channels LoRa 500 kHz BW with SF7 to SF8 starting at 903.0 MHz and incrementing linearly by 1.6 MHz to 914.2 MHz. Those channels can be used with max. RF output power.
- Prolink AU: Uplink/Downlink (Tx/Rx) 8 channels LoRa 500 kHz BW with SF7 to SF8 starting at 915.9 MHz and incrementing linearly by 1.6 MHz to 927.1 MHz. Those channels can be used with max. RF output power.

4. Electrical Characteristics

In the following different electrical characteristics of the iM980B-MBand are listed. Furthermore, details and other parameter ranges are available on request.

Note: Stress exceeding of one or more of the limiting values listed under "Absolute Maximum Ratings" may cause permanent damage to the radio module.

4.1 Absolute Maximum Ratings

Parameter	Condition	Min	Тур.	Max	Unit
Supply Voltage (VDD)		-0.3	-	3.9	V
Storage Temperature		-40	-	+85	°C
Operating Temperature		-40	-	+85	°C
RF Input Power				+10	dBm
ESD (Human Body Model)			2000		V
ESD (Charge Device Model)			500		V

Notes:

1) Unless otherwise noted, all voltages are with respect to GND

Table 4-1: Absolute Maximum Ratings

Note: With RF output power level above +16 dBm a minimum distance between two devices should be 1 m for avoiding too large input level.

4.2 Global Electrical Characteristics

 $T=25^{\circ}\text{C}$, VDD=3.0~V (typ.) if nothing else stated

Parameter	Condition	Min	Тур.	Max	Unit
Supply Voltage (VDD)		2.4	3.0	3.6	V
Current Consumption	RTC off		800		nA
Low Power Mode	RTC on		1.85		μΑ
Current Consumption System IDLE	TRX idle mode, µC idle mode		5		mA
Current Consumption RECEIVE LoRa @500kHz	TRX receive mode, µC sleep mode		13.2		mA
Current Consumption TRANSMIT	TRX transmit mode, μC sleep mode, all μC units off, max. RF power level, 915 MHz		110		mA
MCU operation			32		MHz
frequency			32.768		kHz
Memory (Flash)	iM980B		128		kByte
Flash Memory	Program memory	10k			Erase/
Endurance	Data memory	300k			Write Cycles
Memory (RAM)	iM980B		32		kByte

Table 4-2: General Characteristics

4.3 Module Interface Characteristics

T = 25°C, VDD = 3 V (typ.) if nothing else stated

Parameter	Condition	Min	Тур.	Max	Unit
Digital output voltage	2.4 V < VDD < 2.7 V, 4 mA (max)	VDD -0.45			V
(high level)	2.7 V < VDD < 3.6 V, 8 mA (max)	VDD -0.4	-	-	
Digital output voltage	2.4 V < VDD < 2.7 V, 4 mA (max)	-	_	0.45	V
(low level)	2.7 V < VDD < 3.6 V, 8 mA (max)	-		0.4	
5	VDD = 2.4 V to 3.6 V, CMOS	0.45 VDD+0.38	-	-	V
Digital input voltage (high level)	VDD = 2.4 V to 3.6 V, CMOS, 5 V tolerant	0.39 VDD+0.59	-	-	٧
	воото	0.15 VDD+0.56	-	-	V
Digital input voltage	VDD = 2.4 V to 3.6 V	-	-	0.3 VDD	V
(low level)	воото	-	-	0.14 VDD	V
UART baud rate			115.2		kbps
Notes:	•	•	•	•	•

Notes:

1) Unless otherwise noted, all voltages are with respect to GND

Table 4-3: Module Interface Characteristics

4.4 RF Characteristics

4.4.1 Applicable Frequency Bands and Sub-Bands

Please refer to chapter 3.1

4.4.2 Transmitter RF Characteristics

The iM980B has an excellent transmitter performance as given by Table 4-4. For further details, refer to Figure 4-1 which gives an overview of RF output power levels versus power level settings and its current consumption with microcontroller in sleep mode.

T = 25°C, VDD = 3 V (typ.), 915 MHz if nothing else stated

Parameter	Condition	Min	Тур.	Max	Unit
Frequency Range		902	-	928	MHz
RF Output Power (conducted)	915 MHz Band		17.8	18.5	dBm
Modulation Techniques	LoRa®				
TX Frequency Variation vs. Temperature	-40 to +85°C	-	±12	-	kHz
TX Power Variation vs. Temperature	-40 10 +65 C	-	±0.5	-	dB

Table 4-4: Transmitter RF Characteristics

Note: The antenna has to be matched with a maximum VSWR of 3:1.

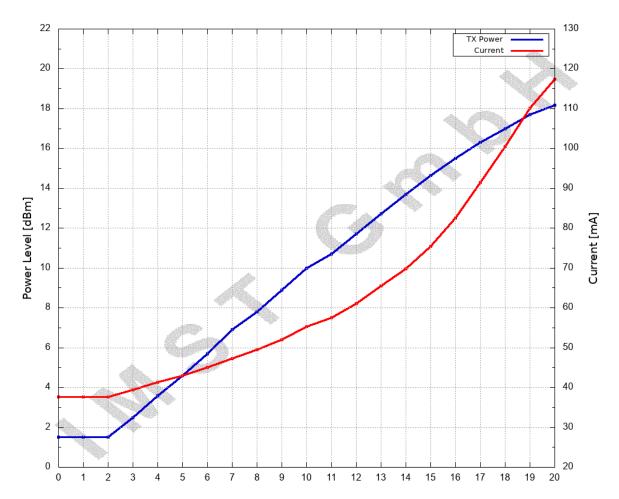


Figure 4-1: RF output power level and current consumption versus power stages from 1 to 20 @ room temperature and 915 MHz

5. Module Package

In the following the iM980B-MBand module package is described. This description includes the iM980B-MBand pinout as well as the modules dimensions. Furthermore, a recommendation for a suitable footprint is given, which should be used for further mounting on appropriate carrier boards.

5.1 Pinout Description

Figure 5-1 depicts a description of the iM980B-MBand's pads on the bottom side. The figure shows the module with its pinout in top view (right figure). A detailed description of the individual pins can be found in Table 5-1.

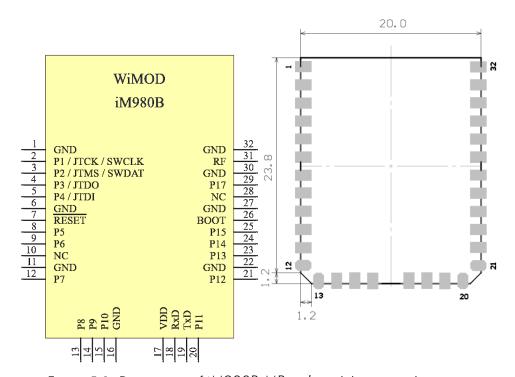


Figure 5-1: Description of iM980B-MBand module pins and top view

PIN	PIN Name	PIN Type	MCU Pin (number)	5 V Tolerance	Description
1	GND	Supply		-	Ground connection
2	P1	D IN/OUT	PA_14 (P37)	Yes	Digital IO / JTCK / SWCLK
3	P2	D IN/OUT	PA_13 (P34)	Yes	Digital IO / JTMS / SWDIO
4	P3	D IN/OUT	PB_3 (P39)	Yes	Digital IO / JTDO
5	P4	D IN/OUT	PA_15 (P38)	Yes	Digital IO / JTDI
6	GND	Supply		-	Ground connection
7	nReset	DIN	NRST (P7)	No	NReset, internally pulled-up by 47 k Ω
8	P5	D IN/OUT	PA_11 (P32)	Yes	Digital IO / USART1-CTS
9	P6	D IN/OUT	PA_12 (P33)	Yes	Digital IO / USART1-RTS
10	NC	NC		-	Should be NC
11	GND	Supply		-	Ground connection
12	P7	D IN/OUT, A IN	PB_14 (P27)	Yes	Digital IO / SPI2_MISO / ADC_IN20
13	P8	D IN/OUT, A IN	PB_15 (P28)	Yes	Digital IO / SPI2_MOSI / ADC_IN21
14	P9	D IN/OUT, A IN	PB_13 (P26)	Yes	Digital IO / SPI2_CLK / ADC_IN19
15	P10	D IN/OUT, A IN	PB_12 (P25)	Yes	Digital IO / SPI2_NSS / ADC_IN18
16	GND	Supply		-	Ground connection
17	VDD	Supply		-	Supply voltage
18	RxD	D IN/OUT	PA_10 (P31) PB_6 (P42)	Yes	Digital IO / USART1-RX
19	TxD	D IN/OUT	PA_9 (P30)	Yes	Digital IO / USART1-TX
20	P11	D IN/OUT	PA_8 (P29)	Yes	Digital IO
21	P12	D IN/OUT	PB_8 (P45)	Yes	Digital IO / I2C1-SCL
22	GND	Supply		-	Ground connection
23	P13	D IN/OUT	PB_9 (P46)	Yes	Digital IO / I2C1-SDA
24	P14	D IN/OUT, A IN	PA_1 (P11)	Yes	Digital IO / ADC_IN1
25	P15	D IN/OUT, A_IN	PA_0 (P10)	Yes	Digital IO / WKUP1 / ADC_IN0
26	P16	DIN	BOOT0 (P44)	No	Bootloader Pin 0, internally pulled-down by 47 $k\Omega$
27	GND	Supply		-	Ground connection
28	NC	NC		-	This pin should be left unconnected
29	P17	D IN/OUT, A IN	PA_3 (P13)	No	Digital IO / ADC_IN3
30	GND	Supply		-	Ground connection
31	RF	A IN/OUT		-	External 50Ω port for monostatic antenna connection
32	GND	Supply		-	Ground connection

Table 5-1: iM980B-MBand Pinout Table

5.2 Module Dimensions

The outer dimensions of the iM980B-MBand are given by Figure 5-2 and Figure 5-3.

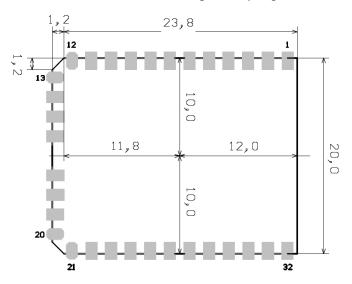


Figure 5-2: Outer Dimensions of the iM980B-MBand (top view)

5.3 Recommended Footprint

According to Chapter 5.2, a recommendation for the footprint of the iM980B-MBand is given by Figure 5-3.

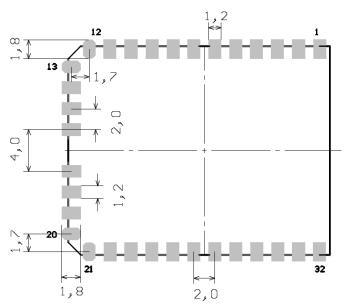


Figure 5-3: Recommended footprint of the iM980B-MBand (top view)

6. Module Interface Characteristics

6.1 Programming Interface

For programming the module with special firmware versions, there are two types of interfaces supported: A SWD-interface, which require a special programmer, as well as a bootloader-interface, for updating the modules firmware via UART-interface.

Note: The module offers some IOs that are connected to the JTAG On-chip Debug system. Currently this interface is unavailable¹.

¹ Currently there is a silicon limitation for the MCU of the module. For more information please see: http://www.st.com/resource/en/errata sheet/dm00097022.pdf (ES0224, V7.0, chapter 2.1.2)

7. Integration Instructions

The iM980B-MBand provides 32 pins as described in Chapter 5. For integrating the iM980B-MBand into an environment, a typically circuit as given in Figure 7-3 can be used. While designing the PCB Layout, the recommendations of Chapter 7.2 should be applied, as well as the recommendation for soldering in Chapter 7.7.

For the host manufacturer it is highly recommended to follow the "Module Integration Guide" (KDB 996369 D04) which is available at the OET Knowledge Database (KDB).

Since the iM980B-MBand is only FCC authorized for the rule parts given by the present document (also listed one the grant), the host manufacturer is responsible for compliance to any other FCC rules that apply to the host including additional testing requirements.

7.1 Labelling Requirements for Host Device

The host device shall be properly labelled to identify the modules within the host device. The certification label of the module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labelled to display the FCC ID/IC ID of the module, preceded by the words "Contains transmitter module", or the word "Contains", or similar wording expressing the same meaning, as follows:

Contains FCC ID: Q9B-IM980B Contains IC: 10740A-IM980B

7.2 Host Device User Manual

The host device manufacturer need add additional information in their user manual. These need to contain:

- The antenna should be installed and operated with minimum distance of 20 cm between the radiator and your body.
- This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- If the host device is being Part 15 Subpart B compliant, the user manual of the host device need to provide a notice, that the final host product still requires Part 15 Subpart B compliance testing with the iM980B-MBand.

7.3 Common PCB Design Recommendations

The Top Layer of the carrier board should be kept free of Tracks and Vias under the iM980B-MBand because there are some test pads on the bottom side of the module which are not covered by solder resist.

All GND pads of the module should be connected via low impedance path to GND.

RF Impedance need to follow the recommendations and is typically based on a grounded coplanar waveguide (CPWG) structure, to reduce effects of electromagnetic fields. The impedance of transmission line for grounded CPWG is basically affected by height H and material of the substrate, gap G between transmission line and ground on the top layer, as well as width W and thickness T of the transmission lines (Figure 7-1). The target impedance is 50 Ohms.

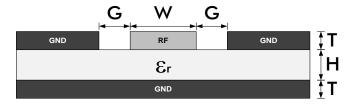


Figure 7-1: Structure of a grounded CPWG

The parameters need to be as follows:

- G = 0.15 mm
- W = 0.6 mm
- Layer-Stack dimensions according to Table 5-1
- All Vias shall be characterized by a diameter of 0.6 mm and hole size of 0.3 mm

Layer	Name	Material	Thickness	Constant
	Silkscreen Top			
	Top Solder	Solder Resist (tol. +/- 10um)	0,020mm	3,5
1	Top Layer	Copper	0,035mm	
	FR4	(eps-r tol. +/- 0.3; thickness tol. +/- 40um)	1,500mm	4,3
2	Bottom Layer	Copper	0,035mm	
	Bottom Solder	Solder Resist (tol. +/- 10um)	0,020mm	3,5
	Silkscreen Bottom			

Table 7-1: Dimensions of PCB Layer Stack

7.4 Integration Procedures

The integrator need to follow exactly the design requirements hereunder:

- A power supply regulator for the radio module, to supply the radio module with a voltage as required by Table 4-1 as shown in the reference schematic Figure 7-3
- Trace antenna requirements according to chapter 7.5

Otherwise the integrator needs to do a "Change-In-ID", which needs to be initially requested at IMST GmbH via the contact data at the end of the document. The procedure need to be followed by a "Class II Permissive Change" application.

7.5 Trace Antenna Requirements

This module can only be used with a host antenna circuit trace layout design in strict compliance with the OEM instructions provided. Modular approval considers a mono-pole-antenna design described by the parameters hereunder:

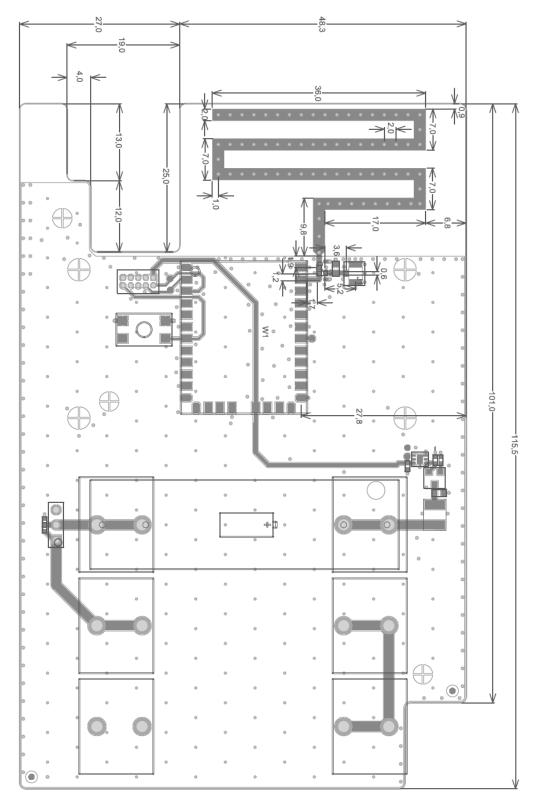


Figure 7-2: Dimensions (in mm) of the antenna

Component	Туре	Manufacturer	P/N
C1	Capacitor	Murata	GCM31A5C3A680FX01D
C2	Capacitor	Murata	GCM31A5C3A680FX01D
Jl	U.FL Connector	Hirose	U.FL-R-SMT-1(10)

Table 7-2: Part List (BOM) for the antenna circuit

Integrator need to verify radiation parameters (TRP, effective gain) in the host device to verify antenna characteristics. Therefore, the test functions of the provided firmware can be used as described in [3]. The document is available on request.

7.6 Typical Application Schematic

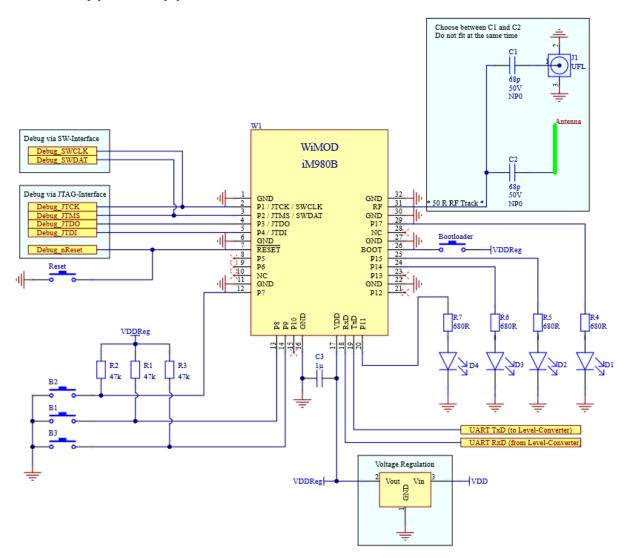


Figure 7-3: Typical Application Schematic for iM980B-MBand

7.7 Recommended Soldering Conditions

An example of the temperature profile for the soldering process of the iM980B-MBand is depicted in Figure 7-4 with the corresponding values as given by Table 7-3. The temperature values should not exceed the limits.

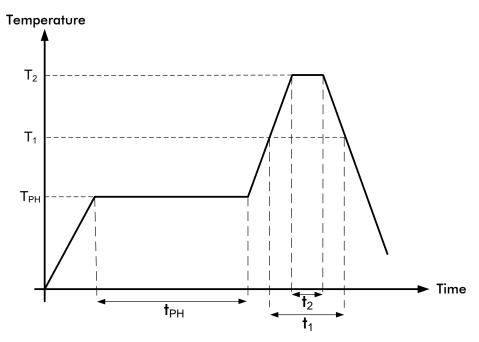


Figure 7-4: Soldering Profile

Phase	Pb-Free Conditions
Preheating	$t_{PH} = 120s$ $T_{PH} = 160 \sim 180^{\circ}C$
Primary heat	$t_1 = 60s$ $T_1 = 220$ °C
Peak	$t_2 = 10s \text{ (max)}$ $T_2 = 255^{\circ}\text{C}$

Table 7-3: Recommended Soldering Parameter for Temperature and Timing

Note: The quality of the soldering process depends on several parameters, e.g. soldering paste, carrier board design, fabrication equipment,...

8. Regulatory Compliance Information

The iM980B-MBand complies with part 15 of the FCC rules and Industry Canada license-exempt RSS standards.

8.1 FCC Regulatory Notices

The iM980B-MBand module has received Federal Communications Commission (FCC) CFR47 Telecommunications, Part 15 Subpart C modular approval in accordance with Part 15.212 Modular Transmitter Statement about FCC.

The iM980B-MBand is authorized for FCC rules of Part §15.247 for specific band access.

Modification Statement

IMST GmbH has not approved any changes or modifications to this device by the user. Any changes or modifications could void the user's authority to operate the equipment.

Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Wireless Notice

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. The antenna should be installed and operated with minimum distance of 20 cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Permitted Antenna

This radio transmitter iM980B-MBand has been approved by FCC to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Туре	Max Gain
PCB meander-antenna	1.7 dBi

Labelling Requirements for Host Device

The host device shall be properly labelled to identify the modules within the host device. The certification label of the module shall be clearly visible at all times when installed in the host device, otherwise the host device must be labelled to display the FCC ID of the module, preceded by the words "Contains transmitter module", or the word "Contains", or similar wording expressing the same meaning, as follows:

Contains FCC ID: Q9B-IM980B

8.2 Industry Canada Statement

This device complies with ISED's licence-exempt RSSs. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference, and
- 2. this device must accept any interference received, including interference that may cause undesired operation.

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be chosen so that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

Radiation Exposure Statement

This equipment complies with ISED radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with greater than 20 cm between the radiator & your body.

The applicable regulation requirements are subject to change. IMST GmbH does not take any responsibility for the correctness and accuracy of the aforementioned information. National laws and regulations, as well as their interpretation can vary with the country. In case of uncertainty, it is recommended to contact either IMST's accredited Test Center or to consult the local authorities of the relevant countries.

Le présent appareil est conforme aux CNR d' ISED applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- 1. le dispositif ne doit pas produire de brouillage préjudiciable, et
- 2. ce dispositif doit accepter tout brouillage reçu, y compris un brouillage susceptible de provoquer un fonctionnement indésirable.

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radio électrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

Déclaration d'exposition aux radiations

Cet équipement est conforme aux limites d'exposition aux rayonnements ISED établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé à plus de 20 cm entre le radiateur et votre corps.

9. Ordering Information

Radio Module 128 KB Flash, 32 KB RAM, 16 MHz MCU crystal AB – iM980B-MBand 2x Adapter Board with iM980B-MBand sales@imst.de sales@imst.de	Ordering Part Number	Description	Distributor
I AB IMMUSIIB MBand I ' Lealoc/alimet do	iM980B-MBand	128 KB Flash, 32 KB RAM,	sales@imst.de
inity of Divisions	AB — iM980B-MBand	2x Adapter Board with iM980B-MBand	sales@imst.de

Table 9-1: Ordering Information

10. Appendix

10.1 List of Abbreviations

ADC Analog-to-Digital Converter

BER Bit Error Rate

BSC Basic Spacing between Centers

CPWG Coplanar Waveguide

CW Continuous Wave

GND Ground

GPIO General Purpose Input/Output

I²C Inter-Integrated Circuit

MCU Microcontroller Unit

PCB Printed Circuit Board

RAM Random Access Memory

RF Radio Frequency

SMBus System Management Bus

SMT Surface Mounted Technology

SPI Serial Peripheral Interface

TRX Transceiver

USB Universal Serial Bus

10.2	List of Figures	
Figure 1	1-1: Picture of iM980B-MBand	4
Figure 2	2-1: Block Diagram of Radio Module iM980B-MBand	5
Figure 4	4-1: RF output power level and current consumption versus power stages 20 @ room temperature and 915 MHz	
Figure 5	5-1: Description of iM980B-MBand module pins and top view	14
Figure 5	5-2: Outer Dimensions of the iM980B-MBand (top view)	16
Figure 5	5-3: Recommended footprint of the iM980B-MBand (top view)	16
Figure 7	7-1: Structure of a grounded CPWG	19
Figure 7	7-2: Dimensions (in mm) of the antenna	20
Figure 7	7-3: Typical Application Schematic for iM980B-MBand	21
Figure 7	7-4: Soldering Profile	22
10.3	List of Tables	
Table 2	-1: Typically Radio Performance of iM980B-MBand	5
Table 4	-1: Absolute Maximum Ratings	9
Table 4	-2: General Characteristics	10
Table 4	-3: Module Interface Characteristics	11
Table 4	-4: Transmitter RF Characteristics	12
Table 5	-1: iM980B-MBand Pinout Table	15
Table 7	-1: Dimensions of PCB Layer Stack	19
Table 7	-2: Part List (BOM) for the antenna circuit	21
Table 7	-3: Recommended Soldering Parameter for Temperature and Timing	22
Table 9	-1: Ordering Information	26
10.4	References	
[1]	Semtech Sx1272 Data Sheet from www.semtech.com	
[2]	LoRaWAN_Regional_Parameters from www.lora-alliance.org	
[3]	WiMOD LoRaWAN EndNode Modem Test Mode HCI Specification	

11. Important Notice

11.1 Disclaimer

IMST GmbH points out that all information in this document is given on an "as is" basis. No guarantee, neither explicit nor implicit is given for the correctness at the time of publication. IMST GmbH reserves all rights to make corrections, modifications, enhancements, and other changes to its products and services at any time and to discontinue any product or service without prior notice. It is recommended for customers to refer to the latest relevant information before placing orders and to verify that such information is current and complete. All products are sold and delivered subject to "General Terms and Conditions" of IMST GmbH, supplied at the time of order acknowledgment.

IMST GmbH assumes no liability for the use of its products and does not grant any licenses for its patent rights or for any other of its intellectual property rights or third-party rights. It is the customer's duty to bear responsibility for compliance of systems or units in which products from IMST GmbH are integrated with applicable legal regulations. Customers should provide adequate design and operating safeguards to minimize the risks associated with customer products and applications. The products are not approved for use in life supporting systems or other systems whose malfunction could result in personal injury to the user. Customers using the products within such applications do so at their own risk.

Any reproduction of information in datasheets of IMST GmbH is permissible only if reproduction is without alteration and is accompanied by all given associated warranties, conditions, limitations, and notices. Any resale of IMST GmbH products or services with statements different from or beyond the parameters stated by IMST GmbH for that product/solution or service is not allowed and voids all express and any implied warranties. The limitations on liability in favor of IMST GmbH shall also affect its employees, executive personnel and bodies in the same way. IMST GmbH is not responsible or liable for any such wrong statements.

Copyright © 2021, IMST GmbH

11.2 Contact Information

IMST GmbH

Carl-Friedrich-Gauss-Str. 2-4 47475 Kamp-Lintfort Germany

T +49 2842 981 0 F +49 2842 981 299 E sales@imst.de I www.wireless-solutions.de